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Pure AdS3 Gravity : A Proposal

Three-dimensional gravity is topological.

The Einstein-Hilbert action can be written as a Chern-Simons theory.

The gauge fields     are the sums and differences of the spin connection     and the dreibein    .

With negative cosmological constant, the gauge algebra is                                            .

The gauge fields satisfy Brown-Henneaux boundary conditions. 
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The boundary action consists of two chiral sl(2,R) WZWN actions.

The boundary conditions gauge a null direction, reducing the 
boundary dynamics to one scalar field with a (chiral) Liouville 
action. Glue the zero modes.

Proposal:  define the dual theory of pure AdS3 gravity to be 

the two-dimensional Liouville conformal field theory.

Draw the consequences of the tightly constrained proposal. 
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Bulk Boundary



There are (BTZ) ‘black hole’ solutions.

Advantages: Disadvantages:

Manifestly consistent and unitary CFT dual

 

Three-point functions (black hole scattering)


Crossing

…

No black hole entropy

There is no thermodynamics/ statistical mechanics/ Hawking radiation.

An isolated theory 

of low dimensional quantum gravity.

Origin of Liouville measure ?



Consequences of the proposal:

The only primary states in the theory are primary black holes, i.e. 
with a mass above a mass gap (proportional to the central charge).

All other states are descendants of these states, made up of boundary gravitons. 

There is no AdS3 ground state in the system. The path integral is not normalisable. 



Takeaway 1

End of part I



Topological AdS/CFT 

in Pure AdS3 Supergravity 

General problem:


Quantum field theories with extended supersymmetry can be twisted: 


a subsector can be defined as a topological quantum field theory, 

which allows to compute a very small subset of the observables of the original theory. 

Suppose we twist a CFT dual to quantum gravity in AdS.

What is the bulk dual of the topological twist ? 


How does one define a twisted theory of quantum gravity ?



Pure Supergravity in AdS3 <-> N=2 Liouville Theory

Twisting in N=2 Superconformal Field Theories in D=2

Spin/dimension (2,3/2,3/2,1)

Dimension 1/2.

Twist:
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Scalar Supercharge

Defines cohomology and space of observables of topological theory.

How to twist in the bulk ?

The bulk supergravity theory will satisfy twisted boundary conditions.

The bulk metric couples to the twisted energy-momentum tensor provided 

we introduce metric dependent twists in the boundary conditions on the 

gauge fields in the three-dimensional supergravity theory. 
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generators as

Γ = A3σ
3

2
+ A+σ+ + A−σ− + A(R)T + ψ+αR

+α + ψ−αR
−α , (2.3)

where the index α takes the two values α = 1, 2. These generators satisfy the osp(2|2,R)
commutation relations,

[
σ3

2
, σ±] = ±σ± , [σ+, σ−] = σ3 , [

σ3

2
, R±α] = ±

1

2
R±α

[σ±, R∓α] = R±α , [T,R±α] = −(λ)αβR
±β ,

{R±α, R±β} = ±ηαβσ± {R±α, R∓β} = −ηαβ
σ3

2
±

1

2
λαβT , (2.4)

where the metric ηαβ = δαβ and its inverse ηαβ can be used to lower and raise the α indices,
and the λ matrix is related to the two-dimensional epsilon symbol through the equation
λαγηγβ = εαβ . See [13] for more details. The sl(2,R) components Aa and Ãa of the connection
are related to the dreibein eaµ and the Hodge dual of the spin connection ωa

µ through the

formulas Aa
µ = ωa

µ + 1
l e

a
µ and Ãa

µ = ωa
µ − 1

l e
a
µ. We pick a bulk space-time of the form of

a real line times a disk, with a cylindrical boundary, and choose a radial coordinate r that
increases towards the boundary. The connections Γ and Γ̃ satisfy generalized Brown-Henneaux
boundary conditions at large radius r [13, 14]

Γ −−−→
r→∞

(
4πL

kR

σ+

r
+ rσ− +

1√
r

4πQ+α

kR
R+α +

2πB

kR
T )dx+ + 0 dx− +

σ3

2

dr

r

Γ̃ −−−→
r→∞

(
4πL̃

kR

σ−

r
+ rσ+ +

1√
r

4πQ̃−α

kR
R−α +

2πB̃

kR
T )dx− + 0 dx+ + (−

σ3

2
)
dr

r
, (2.5)

where the boundary light cone coordinates are x± = t ± ϕ and the coordinate ϕ is compact
with identification ϕ ≡ ϕ + 2π. The fluctuating components of the metric, gravitinos and
gauge field on the boundary are given by the quantities L, L̃, Q+α, Q̃−α, B and B̃ which
are arbitrary functions of the boundary coordinates x±. In order to make the action and the
boundary conditions Γ− = 0 = Γ̃+ compatible, one has to add the term

Sextra = −
kR
8π

∫

Σ2

dtdϕStr(Γ2
ϕ + Γ̃2

ϕ) (2.6)

to the supergravity action S, where Σ2 = R × S1 is the asymptotic cylinder at r → ∞. The
extra term ensures that the variation of the total action is zero when the equation of motion
and boundary conditions are satisfied. The total action (again denoted S) equals

S[Γ, Γ̃] = SCS[Γ]−
kR
8π

∫

Σ2

dtdϕStr(Γ2
ϕ)− SCS[Γ̃]−

kR
8π

∫

Σ2

dtdϕStr(Γ̃2
ϕ). (2.7)

The time components Γ0 and Γ̃0 of the connections are Lagrange multipliers that implement
the zero flux constraints Frϕ = 0 = F̃rϕ. By solving these constraints one finds the spatial
components Γi of the gauge connections,

Γi = G−1
1 ∂iG1 ,

Γ̃i = G−1
2 ∂iG2 , (2.8)

4

3.1 The Twisted Supergravity Theory

In this subsection, we describe the topologically twisted supergravity theory. In order to
identify the twisted theory, we study the holographic duality in the presence of a non-trivial
background boundary metric. Indeed, we know from the boundary perspective that the differ-
ence between the physical and the topological theory lies in the manner in which they couple
to a boundary metric. We concentrate on the case where the boundary metric is conformally
flat for simplicity. Importantly, we propose the boundary conditions that will give rise to
the topologically twisted boundary theory. We then compute the action and verify that it is
equivalent to the topologically twisted boundary action.

As a by-product, we make several observations. Firstly, the bulk action and boundary
conditions in the presence of a conformally flat metric can be obtained by a formal gauge
transformation from the standard case.8 The boundary Liouville action in the presence of a
non-trivial conformally flat boundary metric is obtained by a field redefinition closely related
to the formal bulk gauge transformation. Secondly, this observation holds both in the cor-
respondence between pure gravity and bosonic Liouville theory and in the relation between
pure supergravity and supersymmetric Liouville theory. Thirdly, we show that a further formal
gauge transformation in the bulk transports us from the bulk extended supergravity theory to
its topologically twisted version. The latter satisfies new boundary conditions.9 We confirm
that the bulk theory gives rise to a boundary action which is topologically twisted, and of
total central charge zero.

After this conceptual introduction, it is time to delve into the details. Concretely, we
propose that the bulk supergravity theory after topological twisting and coupling to the con-
formally flat boundary metric g(0)µν = exp(2ω)ηµν corresponds to a bulk Chern-Simons theory
of the type discussed in section 2, supplemented with the new boundary conditions:

Γ −−−→
r→∞

(−∂+ω
σ3

2
+

4πL

kR

σ+

r
+ reωσ− +

1√
r

4πQ+α

kR
R+α +

2πB

kR
T )dx+

+[∂−ω(
σ3

2
+

iT

2
) +

1

reω
∂+∂−ωσ

+] dx− +
σ3

2

dr

r

Γ̃ −−−→
r→∞

(∂−ω
σ3

2
+

4πL̃

kR

σ−

r
+ reωσ+ +

1√
r

4πQ̃−α

kR
R−α +

2πB̃

kR
T )dx−

+[−∂+ω(
σ3

2
+

iT

2
) +

1

reω
∂+∂−ωσ

−] dx+ + (−
σ3

2
)
dr

r
. (3.1)

These boundary conditions are related to those described in equation (2.5) by the gauge
parameter:

γ = h−1f1h , (3.2)

and a similar gauge transformation on the right

γ̃ = hf2h
−1 , (3.3)

8The formal gauge transformation is non-trivial at large radius.
9For discussions of the set of possible boundary conditions in the bosonic context, see e.g. [33, 34]. For

generalizations in extended supergravity theories, see e.g. [35]. The fact that we mix with the R-current in a
way prescribed by the twist, is novel.
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Conformally flat AND Twisted

Brown-Henneaux
Boundary gravitons

Boundary gravitinos

Boundary U(1) R gauge field

The Twist

osp(1,1|2)
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where the group valued factors f1,2 and h are given by

f1 = exp(∂+ωσ
+) exp[ω(

σ3

2
+

iT

2
)],

f2 = exp(∂−ωσ
−) exp[−ω(

σ3

2
+

iT

2
)],

h = exp(
σ3

2
log r). (3.4)

Crucially, the factors e±ω iT

2 are responsible for the topological twisting.10 Under this gauge
transformation, the original Chern-Simons action becomes a Chern-Simons action for the
gauge transformed fields plus a boundary term linear in the fields and a term which only
depends on the gauge transformations. We will drop the latter term since it contains no
dynamical degrees of freedom. Indeed, we consider the metric to be a static background. To
make the action compatible with the boundary conditions on the gauge transformed fields,
we not only need to add the extra term given in section 2.1, but also a term whose variation
cancels the variation of the additional boundary term. Since this term is linear in the fields,
the additional term will serve to cancel it. In summary, we can start from the same action as
in subsection 2.1, but for the gauge transformed fields. Making use of this formal connection,
one can work out the consequences on the various steps of the derivation of the boundary
action reviewed in section 2. These steps lead to the new glued Wess-Zumino-Witten field:

ĝ = f1gf
−1
2 . (3.5)

As a consequence, the boundary action undergoes the shift of fields:

ρ = ρ̂− ω , θ = θ̂ − ω ,

ψ+ = ψ̂+ , ψ̄+ = eω ˆ̄ψ+ ,

ψ− = eωψ̂− , ψ̄− = ˆ̄ψ− , (3.6)

where the hatted variables correspond to the Gauss decomposition (2.14) of the group valued
field ĝ.11 The fermions ψ± and ψ̄± are defined by

ψ± = ψ±1 − iψ±2,

ψ̄± = ψ̄±1 + iψ̄±2, (3.7)

and the same definition holds for their hatted counterparts. The resulting boundary action is

Stop
Liouville =

kR
4π

∫

dx+dx−
(

∂+ρ∂−ρ+ ∂+θ∂−θ + ieωψ̄+∂−ψ+ + ieωψ−∂+ψ̄−

+e2ω[e2ρ − i(eρ+iθψ̄+ψ− + eρ−iθψ+ψ̄−) +
1

4
(ρ+ iθ)R(2)]

)

. (3.8)

10In other words, if one wishes to couple the physical bulk theory to a conformally flat boundary metric,
these factors are to be omitted. Otherwise, one proceeds similarly. For a detailed analysis of the physical
theory coupled to a general boundary metric, see [36].

11In the untwisted theory, the field θ corresponding to the R-current remains invariant after introduction of
the conformal factor.
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Topologically twisted N=2 Liouville theory

A calculation gives the boundary action 

Boundary gravitons Boundary U(1) R gauge field

Boundary gravitinos Topological



(Known) Gravitational Chiral Primaries

Localize Gravitational Path Integral

On

⚠ 🚧



Topological AdS/CFT in String Theory

Extra challenge: twist the boundary conditions on-shell in the bulk.

Therefore, solve the supergravity equations with general boundary metric 

and flat bulk U(1) R-symmetry gauge field. 


Then set the U(1) R gauge field equal to the spin connection. 

Consequence: the world sheet operator that represents the space-time 
energy-momentum tensor is of the twisted form. 

Compute the cohomology. (Largely done.)

Localize the string path integral. (Largely undone.)



central charge c = 3l/(2GN) [27]. In the following we will consider a solution to string theory
based on this general relativity background. We consider a string theory in its NS-NS sector,
with a background metric Gµν , a NS-NS three-form flux H(3) as well as a dilaton Φ. For now,
we will ignore the rest of the internal manifold of the string theory (which we do assume to be
compact throughout). To first order in the inverse string tension α′ the equations of motion
for these fields in string theory read [28]:

α′Rµν + 2α′∇µ∇νΦ−
α′

4
HµλωHν

λω = 0

−
α′

2
∇ωHωµν + α′∇ωΦHωµν = 0

cmatter − ccritical
6

−
α′

2
∇2Φ+ α′∇ωΦ∇ωΦ−

α′

24
HµνλH

µνλ = 0 . (3.4)

We take the dilaton Φ to be constant such that we have a constant string coupling. We
moreover consider the metric solution (3.1) which satisfies

Rµν = −
2

l2
Gµν . (3.5)

A NS-NS three-form flux proportional to the volume form saturates the first two equalities in
the space-time equations of motion (3.4):

H(3) =
2

l

√

|G| dxµ ∧ dxν ∧ dxρ . (3.6)

Indeed, we then have that Hµνρ = 2/l
√

|G|εµνρ and since the space-time metric Gµν is covari-
antly constant, we satisfy the equations of motion. The last equation of motion in (3.4) is also
satisfied if we take into account the contribution of the flux to the total world sheet central
charge, as is standard in AdS3 string theory. We summarize the stringy standard background
solution:

ds2 = l2
(

dr2

r2
+ (r2g(0)ij + g(2)ij + r−2g(4)ij )dxidxj

)

H(3) =
2

l

√

|G| dxµ ∧ dxν ∧ dxρ

Φ = constant . (3.7)

This solution is standard in the sense that it is unique under the conditions that we keep the
dilaton constant, we fix the metric to be of the form (3.1) and we allow for NS-NS flux only,
in the three directions of space-time at hand.2 We worked at the level of the gravitational
approximation to string theory (as we will do in the rest of the paper), but it is important to
realize that many considerations can be made exact in α′. See e.g. [21–23,29,30]. While one is
not able to solve the world sheet conformal field theory in all these backgrounds, performing
conformal perturbation theory in generic deformations around Poincaré AdS3 is within reach.
Finally, the variation of the generating function of correlation functions with respect to the
boundary metric component δg(0)xx = hxx near the AdS3 solution gives rise to the space-time
energy-momentum component T xx as described in [21–23].

2The assumption that the NS-NS-flux moves in lockstep with the metric propagates throughout the pa-
per. A microscopic construction of the string theory background in terms of near horizon NS5-branes and
fundamental strings is bound to obey it.
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Fefferman-Graham + NSNS Flux 

On-shell

In more detail: on-shell string theory



3.2.3 Flat Generalizations

The dimensionally reduced action (3.12) makes it manifest that we can generalize the stringy
standard solution (3.7). Indeed, when the two Maxwell fields are flat, the NS-NS equations
of motion reduce to the three-dimensional equations of motion (3.4). We conclude that the
stringy standard background (3.7) can be augmented to a four-dimensional solution:

Φ : constant

Gµν : locally AdS3 with a non-trivial boundary metric

H : proportional to the volume form

G44 : constant

AR and ĀR : flat . (3.18)

3.2.4 The Explicit Boundary Gauge Field Dependence

Firstly, we consider a class of solutions that allows us to compute the boundary U(1)R current
J R. The current couples to flat boundary gauge field fluctuations. Thus, we add a flat
boundary fluctuation of the gauge field to the background solution (3.7). We parameterize
the solution in terms of the fluctuation of the gauge field component δAR

x̄ and find from the
flatness equation that the other component is given by:

δAR
x =

∫ x̄

∂xδA
R
x̄ . (3.19)

This is a simple example of how the solution takes on a non-local character when we param-
eterize it in terms of boundary fluctuations that couple directly to conserved currents. It is
important to note that parameterising the theory in terms of a given boundary component
is tantamount to adding a particular boundary term to the action [34]. The resulting action
should have an energy bounded from below. This requirement fixes the boundary component
to be chosen in terms of the sign of the Chern-Simons level of the quadratic effective action
(3.14) for the gauge fields [34]. We have chosen our boundary component accordingly.

3.2.5 The Explicit Boundary Metric Dependence

In the following, we choose to perturb the boundary metric around a conformally flat metric.
Conformally flat background metrics have the advantage of allowing for non-trivial boundary
curvature R(0), while still retaining some of the simplicity of the background with a flat
boundary metric.3 Thus, we firstly note that the equation (3.2) for the subleading metric
perturbation combined with the trace condition on the energy-momentum tensor permits a
closed form local solution for the conformally flat boundary metric:

g(0) conf. flat
ij dxidxj = e2ωdxdx̄ . (3.20)

3The curvature is crucial, to give but one example, to understand the boundary theory on a two-sphere.
Indeed, while the boundary theory we are aiming for may be locally independent of the metric, it still depends
on topological curvature invariants like the Euler number of the boundary Riemann surface.

9

boundary metric equals half the boundary Ricci scalar, g(0)ijg(2)ji = −R(0)/2, such that we
need the dependence of the Ricci-scalar on the perturbation hxx to first order:

R(0) = 4e−4ω(−2∂x̄hxx∂x̄ω + ∂2
x̄hxx − 2e2ω∂x∂x̄ω) . (3.27)

Combining equations (3.26) and (3.27), we know explicitly the NS-NS two-form potential B(2)

to first order in the metric perturbation hxx.

3.2.6 The Asymptotic Twisted Generalization

Finally, we generalize the solution (3.7) to the background central to our intent. We introduce a

dependence of the U(1)R gauge field on the asymptotic boundary metric g(0)ij in order to couple
the boundary metric non-trivially to the R-current. We draw inspiration from the analogous
exercise performed in supergroup Chern-Simons theory [18] as well as from the literature
on topological quantum field theories [2]. We wish to introduce a coupling (J R ± J̄ R)µωµ

between the R-currents and the spin connection one-form ω = ωµdxµ on the boundary, where
the relative sign depends on the twist we perform.

In the following, we work near conformally flat boundaries. In conformally flat back-
grounds, the coordinates x and x̄ parameterize light-cone directions in Lorentzian signature.
The boundary R-currents remain chiral, and each current only couples to a single component
of the spin connection one-form. Thus, the gauge fields AR and ĀR near conformally flat
backgrounds are expected to have the boundary profile

AR
x̄ = −

i

4
ω+−

x̄ , ĀR
x = ∓

i

4
ω+−

x (3.28)

where ω+− is the spin connection one-form associated to the boundary metric g(0)ij .5 We choose
the perturbed zweibeins e±:

e+ = eωdx , e− = eωdx̄+ e−ωhxxdx . (3.29)

When we perform a metric perturbation hxx on top of the conformal background, the response
of the spin connection is chiral and equal to

δω+−

x = −2e−2ω∂x̄hxx = −2∇x̄(g
x̄xhxx) , δω+−

x̄ = 0 . (3.30)

Thus, the response of the gauge field component ĀR
x̄ to the perturbation equals

δĀR
x = ±

i

2
∇x̄(g

x̄xhxx) , (3.31)

while the gauge field AR does not vary. We will think of the perturbation as pertaining to the
flat gauge field ĀR

flat introduced in equation (3.16) which couples to the boundary R-current.
The other component of the gauge field guarantees that it indeed remains flat, as in equation
(3.19).

5We explicitly indicate the upper indices on the single component of the one-form spin connection in order
to avoid a clash of notation with the conformal factor ω.
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Add a circle.  AdS3 x S1. KK reduce to find U(1) R Gauge Field.

The Twist

Global conformal and U(1)_R boundary symmetry in bulk geometric terms.

R-symmetry gauge field Spin connection



We demonstrated that

 

the (generic, on-shell) variation of the world sheet partition function with respect to the 
boundary metric (around a conformally flat background) 


leads to 


the insertion of the topologically twisted space-time energy-momentum tensor (world 
sheet vertex operator).



The 1/2 BPS cohomology in all sectors was classified.


(Preparation for localisation of path integral: open problem.)

AdS3 x S1 String Theory

We computed space-time chiral ring structure constants  in the zero winding sector 

using world sheet operator product expansion, finding surprising properties, 

reminiscent of (for now non-existing) N=2 D=2 non-renormalisation theorems.

(Preparation for having a purely topological calculation.)



End of part II

Takeaway 2

First Step: Twist the boundary conditions on the R-symmetry gauge field with the spin 
connection to topologically twist quantum gravity in asymptotically anti-de Sitter spacetimes.


Second Step: Compute the bulk scalar cohomology and localise the path integral. (WIP)



A Step Towards Understanding String Theory in BTZ Black Holes. 

BTZ black holes are Z orbifolds of the universal covering group of SL(2,R)

(NSNS) String Theory on BTZ black holes may be described by 

an orbifolded world sheet WZWN model on the group manifold.

In this paper, we wish to make a contribution to our understanding of string theory in other
asymptotically AdS3 space-times. Prominent examples of such backgrounds are provided by
black hole solutions in three-dimensional anti-de Sitter space-time, the BTZ black holes [9,10].
While many results on the classical solutions of fundamental strings moving in these black
holes have been obtained, as well as some insight in the quantum spectrum [11–18], we believe
they are usefully extended by our results. Indeed, any further step towards understanding a
quantum theory of gravity on a black hole background is worthwhile.

In section 2, we review the Lorentzian BTZ black hole background, its topology as well
as its relation to the SL(2,R) group manifold. We will recognize that string world sheet
embeddings in the BTZ space-time give rise to interesting questions as to the definition of the
string world sheet two-form potential term. In section 3 we review classical string solutions
to the extent that they were known, based on particle geodesics with added winding. We
embed the solutions in the Wess-Zumino-Witten orbifold representing the BTZ black hole
and analyze their energy in more detail. In section 4, we perform a Nambu-Goto analysis
of a long string winding the black hole. We relate the analysis to that of a long string in a
generic asymptotically AdS3 space-time with curved boundary. Comparing the analysis to the
Wess-Zumino-Witten results allows us to identify a preferred definition of the NSNS potential
term in the world sheet model. Section 5 is dedicated to a Euclidean counterpart to the
preceding sections. We analyze how to wind Euclidean solutions such that one obtains classical
solutions in the twisted sector of the black hole orbifold. The path integral in the Euclidean
orbifold coset conformal field theory is computed, and we identify expected contributions to
the partition sum. Section 6 contains conclusions while Appendix A briefly reviews relevant
geometries. Appendix B ties up a loose end.

2 String Theory on Black Hole Backgrounds

In this section, we review the topology of the BTZ black hole and the relation of the black
hole to the SL(2,R) group manifold [9, 10]. We stress that the topology of the black hole
leads to subtleties in the definition of the perturbative fundamental string world sheet model.

2.1 The BTZ Black Hole

We study fundamental string theory on the BTZ black hole background [9, 10] with metric

ds2 =
l2r2

(r2 − r2+)(r2 − r2−)
dr2 −

(r2 − r2+)(r
2 − r2−)

l2r2
dt2 + r2(dφ−

r+r−
lr2

dt)2 , (2.1)

supplemented with an NSNS flux H(3) proportional to the volume of space-time. We imagine a
number of extra dimensions necessary to form a consistent bosonic or super string background
[19]. The inner horizon at radius r− and the outer horizon at radius r+ are set by the black

2

hole mass M and angular momentum J through:1,2

M =
r2+ + r2−

l2
, J = ±

2r+r−
l

. (2.2)

We will often set the cosmological constant length scale l to be equal to one by a choice of
units. The coordinate system (2.1) in which the BTZ black hole is represented makes for
an analogy to common coordinate choices for four-dimensional black holes. However, the
geometry of BTZ black holes is quite different.

2.2 The Black Hole and the Group

As discussed in great detail by BHTZ [10], the BTZ black hole arises from the SL(2,R)
group manifold as follows. The SL(2,R) group manifold with left-right invariant metric is the
three-dimensional hyperboloid

x2
−1 + x2

0 − x2
1 − x2

2 = 1 , (2.3)

with the metric induced from the flat embedding space. Topologically, there is a circle in the
(x−1, x0) plane that can never shrink to zero size. Indeed, the first homotopy group of the

group manifold is non-zero: Π1(SL(2,R) = Z. The universal covering group ˜SL(2,R) covers
the group manifold and has a trivial fundamental group. It has the topology of R3. The BTZ
black hole is obtained by dividing the universal covering group by a Z orbifold action. A
generator of the group acts on a 2×2 standard matrix representation g of the group elements
of SL(2,R) as:

g → eπ(r+−r
−
)σ3 g eπ(r++r

−
)σ3 , (2.4)

where σ3 is the diagonal Pauli matrix with entries ±1. Crucially, when both the horizon radii
r+ and r− are non-zero, the orbifold action has no fixed points. This is equally true on the
covering group. Therefore, the orbifolded manifold is regular and has the topology of R2×S1.
The circle generated by the orbifold action is the one parameterized by the coordinate φ in
the patch where the BTZ coordinates (2.1) are valid.

The BHTZ analysis carries further and involves the metric inherited from the group mani-
fold and the causal structure it induces [10]. They exclude from the BTZ geometry the region
of the manifold which contains circles that are null or time-like on the physical ground that
these lead to paradoxes, and that the coupling to matter would create a singularity at the
boundary surface r = 0. Wherever the topologically non-trivial circle becomes null, the BHTZ
proposal is to introduce a two-dimensional boundary to the BTZ space-time [10].

2.3 An Ambiguity

We have signaled two aspects of the Lorentzian BTZ black hole backgrounds that make it
more subtle to define a unique world sheet theory. The first is the non-trivial topology of

1Our convention is that the radius r− is a positive real number. The mass M is dimensionless while the
angular momentum J has dimension of length. The Ricci scalar equals R = −6/l2.

2Note that if we make the coordinates r, t dimensionless through the replacement (r, t)→ (lr, lt), then we
find a factor of l2 up front in the metric. We will set this length scale equal to l =

√
kα′ later on.
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Part III:



the orbifolded universal covering group which is R2 × S1. The second is the introduction of
boundaries in space-time. We wish to address subtleties associated to the first aspect and will
hardly remark on the second.

The world sheet theory depends on a NSNS two-form flux potential B(2). One way to
define the two-form flux term is as the integral of the field strength H(3) = dB(2) over a three-
cycle Σ3 with a boundary that coincides with the fundamental string world sheet Σ = ∂Σ3. If
the world sheet Σ is topologically trivial (and we have a quantized integral over three-cycles
in the target space) then that definition of the flux term in the world sheet action is unique.
However, we will study winding strings on BTZ black hole backgrounds. These have world
sheets that are rather of the form Σ = R×S1 where the S1 winds the topologically non-trivial
circle in the background R2 × S1 space-time. If the flux term were to fall off at infinity,
we could still define the world sheet flux term in terms of the integral of the flux H over a
semi-infinite cylinder. However, this fall-off condition is not satisfied in the background under
consideration – it is easy to see that the H(3) flux grows with radius since it is proportional
to
√
−G where G is the determinant of the BTZ metric (2.1). Another attempt to define the

theory could go through the compactification of a cylindrical world sheet to a sphere, but this
would lead to a spherical world sheet in a space-time of the form R× S2 and would therefore
give rise to the necessity to choose a gauge invariant flux integral

∫
S2 B in order to define the

model. Thus, we are stuck with string world sheets that do not arise as boundaries of compact
three-cycles and thus the action is hard to define in terms of the gauge invariant three-form
field strength H(3) only.

We can take the point of view that world sheets that have no boundaries have an action
equal to the B(2) field integrated over the world sheet Σ. Because the world sheet has no
boundary, the action is gauge invariant. We argue that this point of view gives rise to a
related ambiguity. To make this discussion concrete, let us focus on the BTZ black hole
background in the coordinates (2.1). The H(3) flux is proportional to

H(3) = rdr ∧ dt ∧ dφ . (2.5)

We can integrate the H(3) flux up to a B(2) potential:

B(2) =
1

2
(r2 − c)dt ∧ dφ , (2.6)

where we introduced a radial integration constant c. Suppose we have a world sheet of topology
R× S1 stretching along the directions (t,φ). Imagine that we wish to define the world sheet
action using the integral over a three-cycle which is a finite cylinder inside the space-time
topology R2×S1. The space-time cylinder has one boundary equal to the world sheet that we
study, and a second boundary which we will call the cut-off surface Σco. When we integrate
the H(3) flux over the finite cylinder, we schematically find:

∫

cylinder

H(3) =

∫

Σ

B(2) −
∫

Σco

B(2)

=
1

2

∫

Σ

(r2 − c)dtdφ−
1

2

∫

Σco

(r2co − c)dtdφ

=
1

2

∫
(r2 − r2co)dtdφ . (2.7)
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The WZWN term is hard to define unambiguously on the plane times circle topology of the black hole.

The integral of the two-form contains an 

integration constant.

WZWN term

The integral of the three-form requires a three-manifold.



3.2 The Winding Strings

It is well-known how to add winding to the string consistently with the string equations of
motion in conformal gauge [1, 11, 13, 14]. The winding solutions read:

t(τ, σ) = tgeodesic(τ) + wτ

φ(τ, σ) = φgeodesic(τ) + wσ

r(τ) = rgeodesic(τ) , (3.8)

where the lower index indicates any solution for the time evolution of a geodesic as discussed
in subsection 3.1. The winding solution is a puffed up geodesic, which winds the angular
direction φ and is appropriately stretched in time.

We presented the classical solutions in conformal gauge. To find the physical spectrum of
winding strings, we still need to solve the on-shell conditions. In the next subsection, we will
solve these conditions, carefully embed the solutions into an orbifold Wess-Zumino-Witten
model and analyze their physical properties in more depth.

3.3 The Black Hole Orbifold

In the following subsections, we discuss properties of the orbifold Wess-Zumino-Witten model
that represents the conformal field theory with the BTZ black hole target. We refer to [11–16]
for related analyses. Compared to these useful resources, in this section we present in more
detail properties of the classical solutions and solve more explicitly for the on-shell energy.

In our study we concentrate on the region outside the outer horizon. That region can be
covered in terms of a group element parameterization:4

g = e
r+−r

−

2 (t+φ)σ3 eρσ1 e−
r++r

−

2 (t−φ)σ3 , (3.9)

which consists of three factors equal to exponentials of hyperbolic generators of sl(2,R). The
radial coordinate ρ is related to the BTZ radial coordinate r through

cosh2 ρ =
r2 − r2−
r2+ − r2−

. (3.10)

We list the (most relevant) current components J, J̄ in the σ3 direction as well as the energy-
momentum tensor in black hole coordinates – with x± = τ ± σ –:

J = −
k

r+ − r−

(
(r2 − r+r−)∂+φ+ (−r2 + r2+ + r2− − r+r−)∂+t

)

J̄ =
k

r+ + r−

(
(r2 + r+r−)∂−φ+ (r2 − r2+ − r2− − r+r−)∂−t

)
(3.11)

T = k
(
r2 (∂+φ)

2 + (r2+ + r2− − r2) (∂+t)
2 − 2 r+ r− ∂+t ∂+φ

+
r2

(r2 − r2+)(r2 − r2−)
(∂+r)

2
)
. (3.12)

4Implicitly, we always take the universal cover ˜SL(2,R).
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We study Winding Strings 

(Part of the asymptotic states)

For large winding strings, the infinite volume contribution is cancelled by an infinite flux 
contribution. We are (still) left with a finite ambiguity in the energy.



We compute the energy of an asymptotic winding string in two ways:

Using an (ambiguous) Nambu-Goto + flux action (in static gauge)

And the standard WZWN construction + Z-orbifold (in conformal gauge).



naively subdominant terms become the leading non-zero terms and they depend on the BTZ
black hole background under consideration. This is related to the fact that a fundamental
string probe is a 1/2 BPS object in string theory and has a charge equal to its mass.

We consider a string that winds w times at large radius r. We plug this ansatz into a
Nambu-Goto action supplemented with a B(2) flux term. We take a B(2) field potential equal
to – see section 2 –:

B(2) =
1

2
(r2 − c) dt ∧ dφ . (4.1)

For starters, we concentrate on the leading and subleading terms in a 1/r2 expansion. The
BTZ metric in the r−2 expansion reads:

ds2 =
dr2

r2
+ r2(−dt2 + dφ2)

+
dr2

r4
(r2+ + r2−) + (r2+ + r2−)dt

2 − 2r+r−dtdφ

+O(r−6)dr2 . (4.2)

All further corrections are proportional to dr2. The action S is

S = SNG + SB , (4.3)

where the flux term in the action is SB and SNG is the Nambu-Goto action. We choose the
static gauge appropriate to describe a long string that winds w times around the circle:

τ = t , φ = wσ , (4.4)

and consider the radius r(τ, σ) to be an arbitrary function of the world sheet coordinates. We
find the flux term:

SB =
l2

4πα′

∫ 2π

0

dσ

∫
dτεαβ∂αX

µ∂βX
νBµν =

kw

2π

∫
dτdσ (r(τ, σ)2 − c) . (4.5)

The Nambu-Goto action SNG is equal to:

SNG = −
l2

2πα′

∫
dτ

∫ 2π

0

dσ
√
− det ∂αXµ∂βXνGµν . (4.6)

The argument of the square root is the determinant of the induced metric hαβ on the world-
volume of the long string. The components of the induced metric have the following leading
terms in the large r expansion:

hττ = −r2 + r2+ + r2− +

(
ṙ

r

)2

, hτσ = −r+r−w +
ṙr′

r2
, hσσ = w2r2 +

(
r′

r

)2

. (4.7)

In the total action including the flux term, the leading volume and area contributions cancel
and using l2 = k α′, we obtain

S =
kw

4π

∫
dτdσ

(
r2+ + r2− − 2c) +

1

r2

(
ṙ2 −

1

w2
(r′)2 +

1

4
(r2+ − r2−)

2

))
+ . . . (4.8)
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and consider the radius r(τ, σ) to be an arbitrary function of the world sheet coordinates. We
find the flux term:

SB =
l2

4πα′

∫ 2π

0

dσ

∫
dτεαβ∂αX

µ∂βX
νBµν =

kw

2π

∫
dτdσ (r(τ, σ)2 − c) . (4.5)

The Nambu-Goto action SNG is equal to:

SNG = −
l2

2πα′

∫
dτ

∫ 2π

0

dσ
√
− det ∂αXµ∂βXνGµν . (4.6)

The argument of the square root is the determinant of the induced metric hαβ on the world-
volume of the long string. The components of the induced metric have the following leading
terms in the large r expansion:

hττ = −r2 + r2+ + r2− +

(
ṙ

r

)2

, hτσ = −r+r−w +
ṙr′

r2
, hσσ = w2r2 +

(
r′

r

)2

. (4.7)

In the total action including the flux term, the leading volume and area contributions cancel
and using l2 = k α′, we obtain

S =
kw

4π

∫
dτdσ

(
r2+ + r2− − 2c) +

1

r2

(
ṙ2 −

1

w2
(r′)2 +

1

4
(r2+ − r2−)

2

))
+ . . . (4.8)
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We recognize a non-trivial kinetic term and a leading potential term that gives the string an
effective negative potential energy:

V = −
kw

2
(r2+ + r2− − 2c) . (4.9)

The final result depends on the choice of constant c. If we identify the potential energy with
the energy (3.26) computed in the Wess-Zumino-Witten model for an on-shell large radius
string, we find that we must set the constant c to zero. If we do set the constant c to zero,
then the AdS3 result V = kw/2 [1, 21] is recovered by analytic continuation in the outer
horizon radius: r2+ = M −→ −1 (which indeed continues the BTZ metric (2.1) into the global
AdS3 metric).5 Therefore our result is consistent with the result of [1, 21]. Our calculation
extends the result to the BTZ black hole backgrounds and provides information on the implicit
choice of flux term in the orbifold Wess-Zumino-Witten model.

4.1.1 The Energy of the Probe String

Finally, we perform a check of the fact that the integration constant is zero in the Wess-
Zumino-Witten model to all orders in the radius expansion, by calculating the exact Nambu-
Goto string energy and comparing with the result obtained using the world sheet Wess-
Zumino-Witten model. For this purpose let us compute the energy near the turning point in
the simple case of r− = 0. We set the derivatives to zero, ṙ = 0 = r′ and introduce r = rmax,
the maximum radius attained by the string. The string energy is then given by the (negative)
integral over the Lagrangian:

Estring = −
∫

dσ L = −kw
(
(r2max − c)− rmax

√
r2max − r2+

)
. (4.10)

Only for zero integration constant c the string energy matches the Wess-Zumino-Witten result
(3.29).The equality of the Nambu-Goto and Wess-Zumino-Witten energies in the presence of
a non-zero black hole angular momentum JBH is proven in Appendix B.

4.1.2 The Winding String as a Probe in Three-dimensional Gravity

One may wonder how the effective tension of the string changes due to the presence of the
black hole. As a first step in an understanding, we note that in three-dimensional gravity,
a point particle creates a deficit angle. A second static point particle far removed sees a
trivial metric and does not feel a force due to the presence of the first particle. However, a
non-local excitation like a winding string will notice that the asymptotic circle has shrunk.
We can either consider that the string winds a smaller circle, or that its effective tension has
shrunk. Our black hole set-up is different, but the physical energy of the winding asymptotic
string still depends on the mass M of the black hole in the interior. That is a long range
three-dimensional gravity effect of the black hole mass on the non-local winding probe.

Finally, note that the effective tension of the winding string is zero for a massless BTZ
black hole. One way to understand this is via the interpolation between the AdS3 space and

5In the anti-de Sitter space-time, it can be straightforwardly argued that c = 0 is a necessary condition for
regularity in the interior.
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We observe that if we choose the positive root for the mass m, then in the limit of large Ẽ the
mass m goes to zero. We can take this limit such that the particle energy E remains finite.
The string energy then takes the form

Estring =
h+ h̄

w
−

kw

2
(r2+ + r2−) +O((

m

E
)2) . (3.26)

At larger energy E, or, at fixed energy E and smaller mass m, the time-like particle geodesic
reaches further out in the black hole space-time. The same statement holds for the wound
string. Thus, the limit we are considering is one in which the string gets closer to the boundary
of space-time. We have computed the energy of the string in that limit.

Finally, in order to facilitate comparison with a later calculation, we consider a short
twisted string at its turning point. For simplicity we set the angular momenta to zero: JBH =
L = 0. From the geodesic solution (3.5), we conclude that at the turning point we have a
maximal radius

r2max =
E2 +Mm2

m2
= Ẽ2 + r2+ . (3.27)

This relates the particle energy and maximal radius of the short string. Our final goal is
rather to express the string energy Estring in terms of the maximum radial extent rmax. For
this purpose, we concentrate on the setting with no internal excitation, h̄ = h̄ = 0. We then
have

Estring = −
km2

2w
−

kwr2+
2

(3.28)

Substituting the value (3.25) for m, we find the energy of the string in terms of the ratio Ẽ.
Finally, rewriting the energy Ẽ in terms of rmax using equation (3.27), we find

Estring = −k w rmax

(
rmax −

√
r2max − r2+

)
. (3.29)

This is the relation between the energy Estring of the short string and the maximal radius rmax

it attains at zero angular momentum. The energy of a twisted short string in the background
of a black hole with angular momentum is computed in Appendix B.

3.5.2 Winding Space-like Geodesics

We turn to the winding space-like geodesics for which m2 is negative. It is convenient to define
the parameter κ through

m = iκ , (3.30)

and choose κ to be a positive real number. We solve the on-shell conditions and obtain the
expression for the string energy in the twisted sector:

Estring =
1

w
(h+ h̄ +

k κ2

2
)−

kw

2
(r2+ + r2−) . (3.31)

Since κ2 > 0 we obtain the inequality

Estring >
1

w
(h + h̄)−

kw

2
(r2+ + r2−) . (3.32)
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We also explored the partition function of the world sheet model. 


The partition function is computed in the Euclidean.

5.2 The Sigma Model on the Euclidean Black Hole

It is useful to specify a few expectations we have for the orbifold spectrum, directly in the
Euclidean context. The Euclidean coset model is often presented in Poincaré coordinates
(ξ, γ, γ̄):

ds2 = dξ2 + e2ξdγdγ̄ (5.3)

with the two-form potential B(2)

B(2) =
1

2
e2ξ dγ ∧ dγ̄ . (5.4)

The B-field is imaginary and the worldsheet theory is not reflection positive. We will be
concerned with Euclidean worldsheets for which the B-field contribution to the worldsheet
action is real [24]:

S =
kb
π

∫
d2z (∂ξ∂̄ξ + e2ξ∂̄γ∂γ̄) . (5.5)

We have defined the complex world sheet coordinates z = iτE + σ, and z̄ = −iτE + σ. In the
Appendix we show how to relate the (ξ, γ, γ̄) coordinates to the Wick rotated BTZ coordinates
(r, tE ,φ). Using the explicit change of variables in (A.3), one can check that the B(2) -field is
strictly gauge equivalent to:

B(2) =
i

2
(r2 − r2+)dtE ∧ dφ . (5.6)

The integration constant c, which was discussed in detail in our discussion of the Lorentzian
theory, now takes the non-zero value c = r2+. In the Euclidean, the time circle pinches off
at the outer horizon and the demand to avoid a source term at the tip fixes the value of the
integration constant.8

5.3 Expectations for Twisted Sectors

The classical coset sigma-model has solutions to the equations of motion that follow from the
factorized solutions for the model on SL(2,C) (see e.g. [26]):

ξ(z, z̄) = log(1 + b(z)b̄(z̄)) + ρ(z) + ρ̄(z̄)

γ(z, z̄) = a(z) +
e−2ρ(z)b̄(z̄)

1 + b(z)b̄(z̄)

γ̄(z, z̄) = ā(z̄) +
e−2ρ̄(z̄)b(z)

1 + b(z)b̄(z̄)
, (5.7)

where the functions on the right hand side are holomorphic or anti-holomorphic.

8The demand that the three-form flux be regular at the tip is not necessarily compatible with other
reasonable demands. See e.g. [25] for a discussion in the context of matching probe and gravity free energies.
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Regularity at the Euclidean point-like horizon requires



We compute the world sheet conformal field theory partition function on the BTZ background.
It can be interpreted as the partition function corresponding to the Z orbifold that gives rise
to the black hole. We describe the twisted sectors of the conformal field theory and how
they fit into the classical theory. We comment on how to fix the flux term in the Euclidean
theory. We refer to [17,18] for interesting and closely related results. We believe our analysis
further clarifies the relation between the spectrum and the partition function. We stress the
important differences that appear in the analytic continuation of the Euclidean results to their
Lorentzian signature counterparts between the case of the anti-de Sitter and the black hole
space-times.

5.1 The Interpretation of the Partition Function

To interpret the black hole partition function, it is useful to contrast it with the one loop, finite
temperature free energy of string theory in three-dimensional anti-de Sitter space. The latter
is obtained by compactifying the AdS3 space-time on a thermal circle [2, 22]. The resulting
partition function depends on two parameters (apart from the cosmological constant), which
are the inverse temperature β, and the chemical potential for angular momentum µβ. We thus
have a multi-string free energy, related to the one-loop vacuum energy ZEAdS3(β, µβ) [2, 22].
It is obtained by thermal compactification, which is implemented through the trace:

ZEAdS3(β, µβ) = TrHe
−βH+iµβL . (5.1)

The Hamiltonian H implements time translation, the operator L corresponds to the rotation
generator and we trace over the Hilbert spaceH to make this a one-loop vacuum amplitude. To
lay bare the relation between the thermal amplitude and the Lorentzian spectral interpretation
requires further extensive analysis [2, 22, 23].

The nature of the BTZ one-loop vacuum amplitude is different. It is a function of two
parameters, both specified by the Euclidean black hole background itself. They are the mass
and angular momentum of the black hole or the inner and outer horizon radii. The partition
function takes the form of an orbifold partition function with twisted sectors labelled by the
winding number w and a projection operator that guarantees invariance under the orbifold
group:

ZBTZ(M,J) =
∑

w

TrHwe
2πiwL . (5.2)

The Hilbert space splits up into twisted sectors labelled by a winding number w. The orbifold
projection operator that identifies the geometry is related to the angular translation generator
L in the Euclidean coset conformal field theory on H+

3 = SL(2,C)/SU(2).
We conclude that we are performing a trace in which we glue by a complexified angular

momentum (instead of gluing by a complexified energy). While for anti-de Sitter space we
have a partition function with two parameters, for each BTZ background we have a single
partition function. In the first case, we can couple two parameters to two charges. In the
second case, we can analyze the trace as a function of the (two parameter) background. The
BTZ Hilbert space depends on the radii r± and it is this dependence that is measured by the
trace.

We refer to Appendix A for a more elaborate discussion of the geometry, the angular
Killing vector and the identification in the Euclidean model.
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A Modular S-transformation on the Torus Boundary relates 
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q = e2πiτ is the elliptic nome and d(h, h̄) denotes a degeneracy of the states of the internal
conformal field theory. Given the coordinate identifications (5.19) and comparing with the
thermal AdS3 calculation, one can write down the Euclidean conformal field theory partition
function by a suitable replacement of the fugacities (β, µβ) with the background horizon radii
(r+, r−) – see Appendix A.2 –:

ZBTZ =
r+
√
kb − 2
√
τ2

∑

w,m

e−π
kb
τ2

r2+|m−wτ |2+ 2π
τ2

Im(Ūm,w)2

|θ1(Ūm,w, τ)|2
. (5.23)

We have defined the holonomy:

Ūm,w = (r− − ir+)(m− wτ) . (5.24)

Note that the holonomy Ū transforms as Ū → Ū/(cτ + d) under world sheet modular trans-
formations τ → (aτ + d)/(cτ + d) which renders the partition function modular invariant.9

5.4.1 An Analysis of the Spectrum

In the remainder of this section we will develop arguments on how to interpret the Euclidean
and Lorentzian spectral content of the partition function. Our arguments and analysis are
speculative – we hope they will be good guides for a more rigorous analysis. See also [17, 18]
for a related but different discussion.

We expand the θ1-function in the denominator of the partition function (5.23) in a series
expansion using z = e2πiν :

1

θ1(ν, τ)
= i

1

η3

∑

r∈Z

zr+
1
2Sr(q) , with Sr(q) =

∑

n≥0

(−1)nq
n
2 (n+2r+1) . (5.25)

This expansion is valid only when |q| < z < 1. We ignore this substantial difficulty here and
develop a further formal argument (similar in spirit to Appendix B of [1]). The ν variable
is given by the holonomy Ūm,w. As a result of our formal expansion, we miss out on certain
contributions to the partition function. We will suggest an interpretation of some of these
contributions in terms of continuous representations later on. At the moment we concentrate
on contributions of the twisted discrete states to the partition function. Keeping this caveat
in mind, we continue with the series expansion. We obtain

ZBTZ =
r+
√
kb − 2
√
τ2

1

|η|6
∑

w,m,r,r̄

SrSr̄ e
2πimr

−
(r−r̄) e2πmr+(1+r+r̄)

q−(r+ 1
2
)w(r

−
−ir+) q̄−(r̄+ 1

2
)w(r

−
+ir+) e−π

kb
τ2

r2+|m−wτ |2+ 2π
τ2

Im(Ūm,w)2 . (5.26)

We use an integral representation that introduces a formal radial momentum s:
∫ +∞

−∞

ds e
−4πτ2

s2

kb−2 e−4πisIm(Ūm,w) =
1

2

√
kb − 2
√
τ2

e−
(kb−2)πIm(Ūm,w)2

τ2 . (5.27)

9Either from this transformation property or from the definition of Ray-Singer torsion [29] – see also [27] –
it is clear that we must have the τ dependent holonomy Ū = ν for the partition function factor θ1(ν, τ). This
corrects an inaccuracy in [2, 23] which is of no further consequence there.
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We use an integral representation that introduces a formal radial momentum s:
∫ +∞

−∞

ds e
−4πτ2

s2

kb−2 e−4πisIm(Ūm,w) =
1

2

√
kb − 2
√
τ2

e−
(kb−2)πIm(Ūm,w)2

τ2 . (5.27)

9Either from this transformation property or from the definition of Ray-Singer torsion [29] – see also [27] –
it is clear that we must have the τ dependent holonomy Ū = ν for the partition function factor θ1(ν, τ). This
corrects an inaccuracy in [2, 23] which is of no further consequence there.
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Naive expansion gives, after analytic continuation to the Lorentzian, 

discrete representations which match short strings, appropriately projected.

The result for the world sheet partition function on the BTZ orbifold geometry is:

(For thermal AdS3, interpretable as the thermal partition 
function corresponding to the Lorentzian spectrum.)



Lastly, we rotate the j integration contour to coincide with the real line (up to an implicit
Feynman type regularization). This allows us to write down the one loop string amplitude in
the form

ZBTZ = 2πr+

∫

F0

d2τ

τ2

∑

w,r,h,N

dr,h,N

∫ +∞

−∞

dj

π
qL0−1q̄L̄0−1 , (5.35)

where the worldsheet Virasoro generators L0 and L̄0 are given by

L0 = −
j(j − 1)

kb − 2
+ i(j + r)(r+ + ir−)w +

kbw2

4
(r+ + ir−)

2 + h+N , (5.36)

L̄0 = −
j(j − 1)

kb − 2
− i(j + r̄)(r+ − ir−)w +

kbw2

4
(r+ − ir−)

2 + h̄ + N̄ . (5.37)

We note that this precisely matches with the Virasoro generators (5.15) for twisted short
strings, provided we make the identification of charges (5.32). After continuation to the
Lorentzian, the speculation is that these discrete representation excitations are the quantum
counterpart to the classical short winding strings based on time-like geodesics.

5.4.2 Continuous Contributions

The θ1 function in the denominator in the partition function has a pole at holonomy Um,w = 0
among others. Expanding the θ1 function in disregard of the range of validity of the expansion
is formally similar to neglecting such pole contributions [1]. In this subsection, we wish to
show that the pole at Um,w = 0 allows for an interpretation in terms of characters of continuous
representations. Inspiration for this identification is drawn from [1].

We start once again from the initial partition function and make a sketch of the pole
contribution:

Zdiv
BTZ =

r+
√
kb − 2
√
τ2

∑

w,m

1

|η(τ)|6
δ(Ūm,w)δ(Um,w) (5.38)

What we shall do now is to rewrite this modular invariant, divergent contribution in terms of
the continuous characters. For this purpose we insert particular prefactors that vanish at the
locations of the poles:

Zdiv
BTZ =

r+
√
kb − 2
√
τ2

∑

w,m

e−
πkbr

2
+

τ2
|m−wτ |2e

πkb
τ2

(ImUm,w)2 1

|η(τ)|6
δ(Ūm,w)δ(Um,w) . (5.39)

We wish to write this delta-function contribution as an integral over twisted continuous char-
acters. To that end we insert the integral representation:

Zdiv
BTZ = 2r+

∫ +∞

−∞

ds e
−4πτ2

s2

kb−2

∑

w,m

e−
πkbr

2
+

τ2
|m−wτ |2e

πkb
τ2

(ImUm,w)2 1

|η(τ)|6
δ(Ūm,w)δ(Um,w) . (5.40)

The discrete summation variable m is Poisson dual to the quantized angular momentum. To
obtain a quantized angular momentum in the continuous representations, the corresponding
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modular invariant pole contribution that can be identified 

with an integral over twisted sector continuous characters.

More work is needed to attain the degree of semi-rigour achieved 

in the analysis of the (thermal and Lorentzian) AdS3 string theory spectrum. 

End of part 3

Moreover, we interpreted a remainder
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